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Abstract 

In the present study, Al-matrix composites reinforced by zircon and aluminum dross were prepared by powder metallurgy 
after sintering at 500oC. The effect of different percentages of zircon i.e., 2, 4, 6, 8 and 10 wt. %, and aluminum dross i.e., 5, 
10, 15, and 20 wt. %, on the physical properties (apparent porosity and bulk density), microstructure and microhardness were 
investigated in details. The apparent porosity and bulk density were determined by water displacement method according to 
Archimedes rule, while the microstructure was investigated by scanning electron microscope. The Microhardness was 
measured by Vickers tester. The results showed that the physical properties and microstructure were improved after increasing 
the amount of added zircon or aluminum dross. Moreover, the hardness of sintered composites was increased with increasing 
both zircon and aluminum dross. The hardness of zircon containing composites was lower than the hardness of aluminum 
dross containing composites. The maximum hardness values were obtained for Al/10% zircon (472 MPa) and Al/20% 
aluminum dross (532 MPa).  
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1. INTRODUCTION   

Composite is composed of two or more materials with significant properties which are different from that of 
individual components [1-3]. When the matrix is a metal, the composite is termed a metal matrix composite 
(MMC). In MMCs, the reinforcement is usually in the form of fiber, particulate, or whisker. It might be an inter-
metallic, ceramic-oxide, or none-oxides as carbide and nitride. The particulate reinforced composites are the most 
broadly utilized and the cheapest ones [2, 4-6]. The fiber-reinforced composite has relatively higher mechanical 
properties. The incorporating of strong fiber in soft/ductile matrix leads to transfer the load to the fibers. The 
matrix also provides protection to fibers from external loads and atmosphere [7-9]. Structural composites are those 
in which the reinforcement is in the form of sheets instead of fiber or particles. These are further divided into two 
categories i.e., laminated and sandwich composites [10]. The common approaches to produce that composite 
contain powder metallurgy, diffusion bonding, liquid phase sintering, squeeze-infiltration, and stir-casting. The 
choice of appropriate processing procedure depends upon application area, quality, and distribution of 
reinforcement. It is probable to get diverse characteristics profile of composite by varying the manufacturing, 
processing and finishing methods even for the same amount and composition of constituents. The constituents of 
a metal matrix composite are usually processed separately, and then bonded with each other [3-4, 11-13]. MMCs 
reinforced with ceramics particles combine both metallic properties (ductility and toughness) and ceramic 
properties (high strength, high wear resistance and modulus) with the ability to be applied at high temperature 
compared to the un-reinforced matrix alloys. These kinds of composites can be applied in structural applications 
as aerospace, automotive industries, electronic and electrical industries, heavy machinery, military, and 
transportation. In the last two decades, these composites have earned more attention due to the accessibility of 
low-cost reinforcements and cost-effective processing routes which can provide reproducible properties [5, 6]. 
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The properties of MMCs depend on the properties of matrix-material, reinforcement, and the matrix-
reinforcement interface [7].  

Powder metallurgy (PM) is an interesting manufacturing technique can be used to produce low-cost, accurate 
and complex parts in large quantity which cannot produce by higher cost conventional methods that need wasteful 
secondary machining operations. In PM process, fine powders of the matrix and reinforcement are combined and 
pressed to get the desired shape, then sintered in ambient conditions [14-16]. In this method the particles should 
be homogeneously distributed to obtain excellent microstructure [17]. 

Aluminum-matrix composites reinforced with particulate have earned a significant attention in different 
structural applications since they have excellent mechanical properties [18-20]. They are usually fabricated by 
PM and casting methods, but the former tool is the preferable one since it gives homogenous material than the 
last one [21-24]. Reinforcement segregation, clustering, high localized residual porosity, and poor interfacial 
bonding are the main problems found in the other processing techniques [25]. The aluminum-containing 
composites have some valuable properties as low-density, high-conductivity, high-toughness and low-price in 
compared to other metals as magnesium [26-27]. Ceramic particulates e.g., Al2O3, SiC, TiC and zircon, have been 
utilized to improve the properties of aluminum composites even at high temperatures [28-33]. Zircon is a ceramic 
material with high chemical stability, corrosion resistance and excellent thermal shock resistance. [33-34]. In the 
present work, the effect of zircon and aluminum dross particulates on the sinterability and properties of aluminum 
matrix composites is the main goal. 
 

2. MATERIAL AND EXPERIMENTAL METHODS 

2.1. Materials 

Pure aluminum, zircon and aluminum dross (waste material) were used to fabricate the aluminum matrix 
composites. Aluminum dross was provided by the Egyptian company for aluminum, Nagee Hammady, Egypt. It 
is a waste material produced as a by-product after aluminum industry. Its main constituents are Al and Al2O3 in 
presence of some traces of SiO2, MgO and sodium [24]. The properties of supplying source for zircon and Al 
powders used in the current study are illustrated in Table 1. 
 

TABLE 1: PROPERTIES OF AL AND ZIRCON POWDERS   

Metal 
powder Purity, % Particle size, 

mesh 

Density, 
(g/cm3) 

Melting 
point, °C Supplier 

   
Al 99.9 100-200 2.7 660 Dop Organic Chemical 

Ltd Company, Turkey Zircon 99 100-200 4.65 2550 

      

2.2.  Experimental procedures  

In the present study, aluminum matrix composites were prepared by powder metallurgy technique using the 
aforementioned raw materials. Different percentages of zircon i.e., 2, 4, 6, 8 and 10% and aluminum dross i.e., 5, 
10, 15 and 20% were used to prepare the designed aluminum matrix composites. Appropriate quantities of pure 
aluminum, zircon and aluminum dross powders were weighed using four digits accuracy electronic balance 
(0.0001% accuracy). The powders were mixed in electric V mixer for 12 hours. Cold pressing of the mixed 
powders was performed for each sample by using the hydraulic press machine type Matest Italy/C055d under 
pressure of 300 MPa in cylindrical steel die having diameter of 8 mm. The pressed specimens were sintered at 
500oC in tube furnace type GSL1600X for 120 min in argon atmosphere to prevent the aluminum oxidation 
process. The bulk density and apparent porosity of sintered composites were measured by liquid displacement 
method according to Archimedes’ principle. Phase identification was performed by x-ray diffraction technique 
using diffractometer type PanalyticalX’Pert PRO-system with target Cu-Kα and diffraction angle 2θ in the range 
20–100o at a rate of 3o min-1. The microstructural feature was investigated by scanning electron microscope model 
"SEM-Quanta FEG 250" attached with EDAX unit. Before testing the microstructure, all surfaces and edges of 
the specimens were wet ground using the suitable silicon carbide papers by standard grinding and polishing 
technique using a Buhlertm machine followed by polishing by diamond past of 6 µm. The Vickers microhardness 
tests were conducted for sintered specimens using nova 240 microhardness tester (NOVA TEST made in Japan 
Co., Ltd.) with a contact load of 10 g according to ASTM E384-11 standard test method at a temperature of 25 ± 
3ºC using a diamond indenter with a steady load. 
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3. RESULTS AND DISCUSSION 

3.1. Powders characteristics 

Figs. 1, 2 and 3 show X-ray diffraction patterns of Al, zircon and aluminum dross powders, respectively. For 
the patterns of Al and zircon Figs.1 and 2, it obviously indicated that all peaks of pure aluminum and zircon are 
identified without any peaks for foreign phases. The pattern of aluminum dross in Fig. 3 exhibits peaks of 
rhombohedral crystal structure for corundum (α-Al2O3) [35], peaks of face-centered cubic (FCC) phase of 
aluminum [36-37] and peaks of hexagonal crystal structure Andalusite (Al2SiO5) [38]. 

 
 

 

Fig. 1.  XRD pattern of pure aluminum. 

                 
 
 
 
 
 
 
 
 
 

Fig . 2: XRD pattern of zircon 
 
 
 
 
 

 

 

 

Fig. 2.  XRD pattern of zircon. 
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Fig. 3.  XRD pattern of aluminum dross. 

3.2. Properties of sintered composites 

3.2.1. Phase composition of sintered composites 
  

Fig. 4 shows X-ray diffraction patterns of Al-zircon composites that contain 2 and 10 wt.-% zircon sintered at 
500oC. After sintering process, no phase changes are indicated, and no new phases are formed. The peaks of Al 
and zircon are exhibited in the patterns. The peaks of zircon are appeared only in the pattern that contains 10% 
zircon. In the other pattern, the zircon content (2%) is under the limit of XRD system to be detected. On the other 
hand, Fig. 5 displays X-ray diffraction patterns of Al-aluminum dross composites that contain 5 and 20 wt % 
aluminum dross. Also, no phase changes and new phases are detected in the patterns after the sintering process. 
The peaks Al2O3 are appeared in small amount in the pattern that contains 20% aluminum dross. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 4.  XRD patterns of sintered composites that contain 2 and 10 wt. % zircon. 
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Fig. 5.  XRD patterns of sintered composites that contains 5 and 20 wt. % aluminum dross. 

3.2.2. Bulk density and apparent porosity of sintered composites 
 
Fig. 6 shows the bulk density of Al/zircon and Al/aluminum dross composites sintered at 500oC. On the other 

hand, the apparent porosity of these composites is shown in Fig. 7. It can be seen that the bulk density increases 
with increasing the percentages of added zircon and aluminum dross. Gradual increase in the bulk density is 
detected in case of addition aluminum dross while sharp increase is indicated after addition of 2% zircon then 
gradual increase is appeared for all other percentages of zircon. The increase in bulk density with increasing the 
amount of zircon and aluminum dross is due to two reasons; firstly, the ZrO2 in ZrSiO4 (zircon) and Al2O3 in 
aluminum dross have higher density than Al (base of the composites). Secondly, during sintering at 500oC, the 
atoms diffusion and grain-grain interaction lead to close the pores and increasing the density [39-41]. It seems 
that the addition of zircon and aluminum dross facilitate the atoms diffusion and the interaction between the grains 
[33, 42]. This feature is appeared in Fig. 7 which displays the relationship between the apparent porosity and 
zircon or aluminum dross content. The trend of porosity goes in opposite trend of bulk density. The apparent 
porosity of Al sintered at 500oC is about 12.4%; it decreased to about 9% after addition of zircon or aluminum 
dross [43]. Similar trend for bulk density results have been reported for Al/zircon composites by the authors in 
ref. [33]. In that study they indicated that the bulk density increases with increasing the amount of zircon content 
after sintering at 600 and 650oC and after adding up to 30 wt.% of zircon. It has also been reported by Zawrah et 
al. that the addition of ceramic particles to metal-base composite has positive effect on physical and mechanical 
properties [44-46].  

 

        
Fig. 6.  Effect of zircon and aluminum dross on bulk density of Al-matrix composites sintered at 500°C 
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Fig. 7.  Effect of zircon and aluminum dross on apparent porosity of Al-matrix composites sintered at 500°C 

3.2.3. Microstructural analysis of sintered composites 
 
Figs. 8 - 12 show SEM images (different magnifications) of pure aluminum, Al/2% zircon, Al/10% zircon, 

Al/5% aluminum dross, Al/20% aluminum dross composites sintered at 500, respectively. On the other hand, the 
EDAX spectra of Al/10% zircon and Al/20% aluminum dross composites are displayed in Fig. 13. It is indicated 
from Fig.8 that the microstructure of sintered aluminum is homogenous with some voids and pores (dark-gray 
color). The aluminum grains seem to be elongated and tend to defuse with undefined edges. After addition of 2 
and 10% zircon (Figs. 9 & 10), the pores and voids are decreased, and the microstructure maintain homogenous 
with decreasing the grain size. The pores and grain size of the composite that contain 10% zircon are smaller than 
those composites contain 0.0 and 2% zircon. The zircon particles are well distributed in the matrix and seem to 
be agglomerated in some places. Such kind of microstructure which has low grain size and low porosity will 
reflect on the other properties especially the mechanical properties. For the microstructure of Al/5% aluminum 
dross and Al/20% aluminum dross composites sintered at 500 (Figs. 11 and 12), since the aluminum dross is 
composed mainly of Al, Al2O3 and some impurities as SiO2, the microstructure contains only the aluminum grains 
with some edged alumina grains. These grains are well distributed in the aluminum matrix and lead also to 
decrease the grain size of aluminum matrix. The composite that contains 20% aluminum dross exhibits lower 
porosity and lower grains size (Fig 12) as compared to the composite that contains 5% aluminum dross. These 
results will reflect on the mechanical properties. The area chemical analyses for Al/10% zircon and Al/20% 
aluminum dross composites as conducted by EDAX are shown in the spectra presented in Fig. 13. It is appeared 
that the sintered Al/10% zircon composite are composed mainly of Al, ZrO2 and SiO2 while Al/20% aluminum 
dross composite constitutes of Al, Al2O3 and trace of SiO2. These results confirm the results obtained by XRD 
technique. 
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Fig. 8.  SEM images (different magnifications) of pure Al sintered at 500°C. 

 
 

 

  
 

Fig. 9. SEM images (different magnifications) of Al/2% zircon composite sintered at 500°C. 
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Fig. 10. SEM images (different magnifications) of Al/10% zircon composite sintered at 500°C 

 
 

   
  

  
 

Fig. 11.  SEM images (different magnifications) of Al/5% Al-dross composite sintered at 500°C. 
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Fig. 12. SEM images (different magnifications) of Al/20% Al-dross composite sintered at 500°C. 

 

   

 
  

Fig. 13.  EDAX spectra of 10% zircon (a) and 20% Al-dross (b) containing composites. 

3.2.4.  Microhardness of sintered composites 
There are various factors affecting the mechanical properties of sintered metal-matrix composites. These are 

the reinforcement should be well-distributed in the matrix, the refinement of matrix grain size, lower porosity 
microstructure and types of phases formed in the composites [47-48]. Microhardness of Al/zircon and 
Al/aluminum dross composites sintered at 500oC is shown in Fig.14. It is appeared that the hardness increases 
with increasing zircon and aluminum dross contents. Generally, the hardness of Al/zircon composites is relatively 
lower than the hardness of Al/aluminum dross composites due the lower content of zircon (up to 10%) which 
contains ZrO2 and SiO2 as compared to the aluminum dross (up to 20%) which contains Al and Al2O3. The 
maximum hardness values are obtained for Al/10% zircon (472 MPa) and Al/20% aluminum dross (532 MPa). 
Here, the hardness depends on composition of composites, refinement of the grain size and porosity of the sintered 
composites. The addition of higher amount of zircon (10%) and aluminum dross (20%) leads to decreasing the 
grain size and porosity with increasing the amount of hard oxides in the matrix. It has been reported by several 

a 

b 
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researchers that the hardness of aluminum composites was improved by addition of zircon or alumina. The 
existence of such hard oxides in the matrix leads to decrease the porosity, decrease the grain size and consequently 
increase the hardness [33, 49]. 

 

     
       

Fig. 14.  Effect of zircon and aluminum dross on microhardness of Al-matrix composites sintered at 500 °C. 

4. CONCLUSION 

In the present study, the following remarks were concluded: 
1. Al/zircon and Al/aluminum dross composites with improved properties were successfully prepared by 

powder metallurgy and sintering at 500oC for 2 hrs.  
2. Addition of zircon and aluminum dross led to improving the physical and mechanical properties of the 

prepared composites as compared to that of pure aluminum due to the refinement of grain size of the matrix, 
decreasing the porosity and excellent properties of their reinforcements as ZrO2 and Al2O3. 

3. Due the incorporation of zircon and aluminum dross in the matrix of composites, improved hardness was 
obtained, and their values were increased with increasing the amount of zircon or aluminum dross. The 
maximum hardness was obtained for the composites Al/10% zircon (472 MPa) and Al/20% aluminum dross 
(532 MPa).    
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