

Available online at https://sej.journals.ekb.eg/

FACULTY OF ENGINEERING – SOHAG UNIVERSITY

Sohag Engineering Journal (SEJ) VOL. 3, NO. 1, March 2023

Camera-Based Navigation System for Blind and Visually

Impaired People

Islam Mohamed*, Mostafa Salah, Ahmed Farghal

Dept. of Electrical Engineering, Faculty of Engineering, Sohag University, Sohag 82524, Egypt

Abstract

One of the essential aspects of our life as humans is vision, the ability to see and describe the world with our eyes. Therefore,

blinds, even visually impaired people, have plenty of hardships in their daily life activities. They may find it difficult to

recognize objects or people in front of them. This paper presents an emphasis on developing a real-time system to aid these

people using a Raspberry Pi to process pieces of information provided via camera and ultrasonic sensors with a simple feedback

mechanism to inform the user through a headphone. Using this system, the blind could walk without the white cane, and most

importantly, it reduces the blind's dependence on other people, thus increasing their quality of life. The proposed system works

in different scenarios at both indoor or outdoor environment and has multiple modes of operation to help the blind in different

situations with minimum hardware to get an affordable device with a satisfactory offline real-time performance. The system

mainly utilizes the technology of deep learning with computer vision to efficiently solve common difficulties such as object

recognition, face recognition, and reading text in real-time feedback responses. it sends an audio signal for the user informing

him about objects with their count and relative position, familiar faces, or text recognized in the captured frame.

© 2023 Published by Faculty of Engineering – Sohag University. DOI: 10.21608/SEJ.2022.155927.1018

Keywords: Blind; Visually impaired; Navigation; Travel aid; Assistive system; Raspberry Pi; Ultrasonic sensor; Camera; Computer

vision;Deep learning; Object detection; Face recognition; OCR.

1. INTRODUCTION:

1.1. Problem statement:

Visual impairments can discourage one from performing his usual activities. It hinders his work, studies, travel,

and overall health. Moreover, navigation becomes a real challenge. Unfortunately, the World Health Organization

(WHO) derived that about 2.2 billion people of all ages worldwide have a visual impairment or blindness, and at

least half of them have a visual impairment that can be prevented [1]. We are concerned with cases where there

is no available cure or wearing glasses solutions. The number of these cases is increasing every year according to

Vision Loss Expert Group estimations [2] for the global number of people who suffer from visual impairment or

blindness over time as shown in Table 1.

TABLE 1. ESTIMATION BY VISION LOSS EXPERT GROUP FOR THE WORLDWIDE NUMBER OF PEOPLE WHO ARE

BLIND OR VISUALLY IMPAIRED OVER TIME
Year Global number affected over all ages (millions)

 Blind Visually Impaired Total

1990 31 160 191

2000

2010

2015

2020

2030

2040

32

34

36

39

55

80

176

199

217

237

330

451

208

233

253

276

385

531

2050 115 588 703

* corresponding author: islammohamedkamal25@gmail.com

https://doi.org/10.21608/sej.2022.155927.1018

2 Sohag Engineering Journal (SEJ) VOL. 3, No. 1, March 2023

1.2. Related work and available solutions:

There are several attempts developed for blind and visually impaired (BVI) people to help them independently

navigate safely and efficiently. Convenient navigation aids such as white canes or guide dogs are cheaper and

more cost-effective; however, they require full attention by the user so, they are extremely useful for near-ground

obstacle avoidance especially when there is no crowd in safer outdoor environments. With the growth of

technologies, smart electronic travel aids (ETAs) have been developed that further help reduces accidents and

facilitate movement, thus improving the traveling experience in unfamiliar places in general [3,4]. ETAs can be

represented in subcategories such as robotic navigation aids (RNA), smartphone-based systems, and embedded

systems in wearable attachments. An RNA example is mostly a hardware-based system as shown in [5,6]. RNAs

mainly use friendly blind interfaces in form of smart canes. These are useful as they can be used passively as a

normal white cane. These canes are equipped with various sensors such as 3D cameras, ultrasonic or LiDAR

sensors, fire or water sensors, global positioning system (GPS) modules, etc. Their limitations are mainly due to

their compact size which affects the cost of developing such systems. This is because they should contain several

sensing elements to convey sufficient obstacle information for pathfinding and navigation purposes in such a small

size. A useful hardware-based product [7] is available but unluckily, it is expensive at 599$ per unit.

Unfortunately, most of the existing systems are either hard to adapt, costly, difficult to carry, or sophisticated to

use developed features. This reduces the usefulness of the majority of hardware solutions. Another type of ETAs

is utilizing the smartphone in order to develop a reliable device not a bulky one with less hardware and hence,

relatively low cost. This allows internet of things (IoT) and cloud computation to be the dominant fields of study

for developing such systems. According to [8-10] which uses IoT via a Bluetooth assistance application in a

smartphone. Since the smartphone is the main computing device, such systems are limited to smartphone sensors.

An additional sensor must communicate with the smartphone with some sort of Radio Frequency Identification

(RFID) or beacon or external server. This allows easier firmware and software to be updated via the internet. That

reveals the major disadvantage for these systems which is the total dependence on beacon and internet signals for

communication between outer sensors, the cloud, and the smartphone. Hence, there might be inapplicable for real-

time performance. There are software-based available solutions [11-14] with no hardware but a smartphone such

as KNFB Reader (one step reader), Tap Tap See, Cash Reader, and Seeing AI. These apps mainly utilize the

camera sensor of the smartphone applying some sort of computer vision techniques to process the image/frame

and then give feedback to the user describing the image/frame captured. Ignoring the fact that some of these

applications are pay-to-use apps, the major disadvantage lies in there is still a need for visual interaction for

selecting the app and features from the selection menu provided like that in seeing AI. This makes them perfect

solutions for the visually impaired; however, they are not very useful when it comes to blind people. A better

approach can be achieved by integrating smart systems into one or more wearable attachments with lightweight

sensors to help the blind with common activities. According to [15,16], these systems provide real-time

performance and immediate feedback since they are worn by the user. These can contain multiple sensors in

different attachments like belts, gloves, glasses, jackets, shoes, etc. in order to acquire different information about

the obstacle. Hence, they are suitable for aiding in various cases.

The proposed project is wearable glasses that is basically a deep learning computer vision-based system. The

challenge developing such an assistive system is to increase the precision for a deep learning convolutional neural

network (CNN), you have to use more complex architecture which actually affects the speed. A deep learning

architecture determines the number of parameters need to be calculated before the classification. Different object

detection architectures are tested; however, for real-time situations, the smaller architecture, the better it is. Thus,

a single shot detector (SSD) object detection architecture [17] is used. It gives an optimal balance between speed

and accuracy. This proposed system will aid BVI people in three functions: object recognition with relative

localization from user with distance threshold calculating, face recognition for family and friends, and reading

text which utilizes the optical character recognizer (OCR).

The rest of this paper is organized as follows: Firstly, we will be exploring the proposed system overview in

Section 2, followed by methodology and results in Section 3. Eventually, the conclusion and ideas for future work

will be discussed in Section 4.

2. SYSTEM OVERVIEW:

2.1. Proposed prototype:

The prototype in its simplest form is an assistive system for the visually impaired and blind people through

wearable attachments. It is agreed to pick up 3D designed glasses as wearable attachment. However, multiple

intelligent attachments can be deployed for different purposes, as stated before. These systems should be

interfaced and integrated together with fast sensors to react in the real-time manner. Also, they should help in

preventing the user from dangerous indoor or outdoor situations to allow some kind of path planning for BVI

people with a cost-effective way. In the proposed system, shown in Fig. 1, we are considering two main

Mohamed et al: Camera-Based Navigation System for Blind and Visually Impaired People 3

subsystems with three different modes of operation to provide the sufficient aid for the BVI people. Although we

are considering this system mostly to be used in an indoor environment, it can still be used under outdoor

environment. We will firstly begin discussing the functions of each sub system then go through more details for

how the three different modes work.

Fig. 1. Proposed system block diagram.

2.2. Subsystems and some information about the hardware used in these subsystems:

We are using a single camera module rev 1.3 with a cable that is designed specifically for raspberry pi. This

module provides 5MP. It supports capturing video in 480p @ 60/90, 720p @ 60fps, and 1080p @ 30fps. However,

the frames per second drop due to processing done on each frame. This sensor gives information signals needed

for object detection. Also, we are using a single hc-sr04 basic ultrasonic sensor which gives the necessary echo

signal to calculate the distance based on the ultrasonic wave triggered. I keep saying a single unit as several units

in multiple wearable attachments can give multiple signals for different purposes, please refer to ideas for future

work in section 4.

• Object detection system: Utilizing a camera that takes a live video (or frame images) and sends them to the

Raspberry Pi, then the Raspberry Pi can process these frames by applying a deep learning object detection

model on the captured frames. And therefore, the camera system is used to detect each object in each frame.

Now, we have got the information from the image signal. We will consider a simple feedback mechanism for

this sub-system. So, the feedback output is done via converting the recognized object name to speech that

BVI users can hear audible phrases through a speaker (hand free).

• Distance measuring system: Utilizing an ultrasonic sensor to provide the required signals for near objects and

obstacles distance measuring. Those signals can be processed by the Raspberry Pi and translated to indicate

the relative position of the obstacle from the user by giving meaningful warning feedback. As we have stated

previously that in our scenario case, we are considering helping BVI to navigate and recognize objects in

indoor (enclosed) environments. Although the first and second modes can be used in an outdoor environment

for simple object detection and face recognition, this system can be improved and developed further for

including safer outdoor environment navigation.

2.3. Modes of operation:

The proposed system has three main modes of operation, as represented in Fig. 2. The BVI user can toggle

between the three different modes using a single pushbutton. The distance measuring subsystem, via ultrasonic

sensors, that allows the system to provide audible stop warning alerts beyond certain threshold. This subsystem

mainly used in mode 0; however, it could be useful to be carried over to mode 1, too.

• Mode 0: This is a general-purpose mode in which the Raspberry Pi focuses on detecting different objects with

the help of two different models that are combined together, namely, 'model A' which is a quantized pre-

trained model on the Microsoft common objects in context (COCO) dataset [18] to detect 80 different classes

of objects, and 'model B' which is a custom object detection model based on SSD architecture used to classify

classes that don't exist in the pre-trained model increasing the number of classes with a total of 96 classes.

4 Sohag Engineering Journal (SEJ) VOL. 3, No. 1, March 2023

And since SSD architecture is state-of-the-art when it comes to speed and accuracy, the real-time performance

is minimally affected by having two models that run on the captured frame.

• Mode 1: This a specific-purpose mode at which the Raspberry Pi focuses on recognizing relevant humans for

the visually impaired user. With this mode, The BVI people can recognize specific men who are standing in

front of themselves. The main objective is to allow users to identify known family members, or friends which

will help them to be secure and social. The main issue with this mode is that we have to get datasets for faces

in order to be detected later. There is also a challenge in the hardware side which is the camera sensor

resolution which can be further improved via image processing for the frame.

• Mode 2: This is also a specific-purpose mode in which the Raspberry Pi focuses on reading plain text. This

text is scanned from a frame by the camera via an optical character recognizer (OCR). Therefore, OCR scans

and reads printed documents and signboards. The main challenge in that mode, in my opinion, is the

requirement for on-board computation on the wearable platform as images observed, by a moving camera,

are subjected to motion or out-of-focus blur. Thus, OCR should be applied after preprocessing the frame.

3. METHODOLOGY AND RESULTS:

3.1. The 3D glasses design:

The assistive device is a simple 3D glasses that are designed through CAD software called Fusion360. This

software is very good for creating and designing efficient mechanical structures in STL (or Standard Tessellation

Language) file format. The material used for realizing the STL design is called PLA+ (high concentration of

polylactic acid). The final design of the 3D glasses, shown in Fig. 3, consists of specific parts which can support

the camera and ultrasonic sensors and two boxes for raspberry pi and battery holding. However, these boxes can

be detached from the glasses structure. Noting that is better realized if the boxes all together away from the glasses

so, for further details on this idea please refer to section 4.

Fig. 2. Modes of operation.

Fig. 3. The final design of 3D glasses parts.

Mohamed et al: Camera-Based Navigation System for Blind and Visually Impaired People 5

3.2. Procedures and implementations with results:

The entire processes will be explained in this section. The proposed methodology as block diagrams is inspired

from [19] with additional functionalities shown in Fig. 4.

Fig. 4. Proposed methodology as block diagrams.

6 Sohag Engineering Journal (SEJ) VOL. 3, No. 1, March 2023

Considering the first part which is the object detection mode which is mode 0. Mode 0 can be divided into

distance calculation for comparing it to a certain threshold defined in the script, and a combination of two models

inspired by ensemble learning; however, unlike ensemble learning, the two models have different outputs,

predicting different categories.

Distance estimation is done by ultrasonic sensor. Calculations are done every multiple frames for lower power

consumption. However, they are much faster (higher calculation frequency per frame) when there is no object

presented on the captured frame by the camera. Some factors may affect distance estimation. This is due to the

theory of operation of the distance-estimation sensor. Ultrasonic depends on the speed of sound for distance

calculation which is actually a variable due to temperature, humidity, and other weather conditions. This variation

can affect results, especially in extreme environments; however, actually not taken into consideration developing

the distance measurements in the proposed project instead the average sound velocity is considered

constant 𝑣𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐 𝑤𝑎𝑣𝑒 ~ 34300 𝑐𝑚/𝑠. And hence, the distance can be calculated, by measuring the round-trip

time for the triggered wave, as follows 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑡𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 ∗ 𝑣𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐 𝑤𝑎𝑣𝑒)/2. If the distance is less

than a threshold value, i.e., 30 centimeters, a stop alert is fired. Therefore, obstacle avoidance is basically the aim

of this distance measuring system and that is all about this block.

 In this mode, deep learning is utilized for object detection. Considering firstly, the pre-trained SSD model A.

This model is quantized for faster processing, and since it is pre-trained on a relatively large database, it has a

decent generalization error. Meaning the model will perform well in different environmental conditions. In fact,

generalization error reduction is the actual goal of any deep learning model. During training, an algorithm, called

an optimizer, adjusts some weights and biases on a neural network architecture to obtain the minimum error at

training. However, generalization error cannot be controlled. You have to measure it on a test set. Therefore, after

some point, reducing training error results in an increment in generalization error. That is the main challenge

which is famously called overfitting. Having a small dataset makes your model more prone to overfitting in a

specific network. Unfortunately, a huge dataset should be used for training a network architecture from scratch

but luckily, we can use some knowledge from the pre-trained model as we do not have a lot of images for each

class. This is a type of transfer learning called fine-tuning. By freezing some of the earlier network parameters

which contain low-level features and only concentrating on learning higher-level features, we can achieve a decent

generalization. Hence, we can use our small manually gathered image set to let the optimizer improve a smaller

number of parameters. The bad news is that we need to include the pre-trained classes’ original set with our custom

image set during training, or this fine-tuning will significantly affect the generalization for the pre-trained classes.

Hence, a way to come around this in the proposed system is to integrate two different object detection models.

Model A will be a quantized pre-trained model identifying 80 different common object classes [20], shown in Fig.

5, with good generalization in different scenarios, and Model B will be a custom object detection model to serve

for other objects that are not existing in the COCO labels including some hazards detection shown in Fig. 6.

Fig. 5. The Microsoft COCO labeled objects for model A.

Fig. 5. Custom class labels for model B.

Mohamed et al: Camera-Based Navigation System for Blind and Visually Impaired People 7

After defining the labels needed for model B, it is time for gathering images. There are several datasets for

object detection such as the CIFAR-100 [21], CALTECH-101 [22], PASCAL VOC [23], ImageNet [24], and a

lot more on Kaggle [25]. Since deep learning models extract all features (representations) and patterns from the

raw data, the quality of the data matters. Thus, bad data implies a bad-performing deep learning model. Images

taken via mobile should be preprocessed to 1024 by 1024 JPEG images to remain containing the object details

with relatively lower size as this will be better for minimizing the training time. The preprocessing software, we

have used, to resize images and reduce the size of images is named Caesium [26]. There is also a website for jpg

image compression called tiny jpg [27]. When collecting images using a mobile camera, we have tried to take

them from various angles and lighting conditions so, that the model can generalize features for different

conditions.

Taking into consideration the data imbalance problem. Therefore, for model B, we took 60 images per class

both gathered from fair-use google images and manually captured images via mobile phone. From which, we take

7 images as validation data. With a validation ratio of 11.67% of the total data at hand. Total images at hand

divided like that 172 currency-class from Kaggle [28] (5Egp, 10Egp, 20Egp, 50Egp, 100Egp, 200Egp) + 60 bench

+ 60 door + 60 fire + 60 fire extinguisher + 60 recycle bin + 120 stairs (Up + Down) + 60 toggle switch + 60

wallet + 60 wet Floor Sign = 772 images. Later added 25 more fire images. This is a deliberate data imbalance

for the fire class as it is the only class that performs poorly. So, it ends up with ~ 800 images for training, validation,

and testing.

After splitting, we created annotation files via a python software (tool) developed by Tzutalin called LabelImg

[29]. Gathered images were manually annotated with this tool to produce extensible markup language, or shortly

XML, annotation files. These files contain the answer to a particular image for the supervised training. They

include image size, path, object names, and bounding boxes’ position. While annotating, we considered keeping

the bounding box as tight as possible, therefore, the model can learn the feature of that specific object, not the

surroundings.

After annotating images, it is time to input them into a particular architecture to learn from the labeled images.

The main reference, from which implementation for custom object detection (OD) models from TensorFlow 2

(TF2) detection model ZOO [30], was Nicholas Renotte from the GitHub repository [31] based on TensorFlow

application programming interface (TF API) for object detection. Fine-tuning the dense output classification layer

of a CNN is utilized due to dataset size limitations. If training is done from scratch, it is very likely for overfitting

to take place. To further eliminate (or resist) this problem, image augmentation is used during training in the TF

API to increase the number of images hence, improving generalization. We first created the label map which is a

text file in (. pbtxt format) that contains all objects labeled in images. Then prepare the input file for the TF API

for OD which is called TF records. TF records are just binary files for annotation and images you will feed the

model with this API. Generating training and validation records, writing their paths in the configuration file,

updating the number of classes, selecting the batch size for the optimizer, and adding augmentation options needed

are all we did in the pipeline configuration file. The selected pre-trained model was chosen to be the

ssd_mobilenet_v2_fpnlite_320x320_coco17. FPN lite is a lite Feature Pyramid Network that is a feature extractor

designed with the feature pyramid concept for feature sharing to improve accuracy and speed. And the 320𝑥320

refers to the input image size that is accepted by the CNN of the model. SSD architecture, shown in Fig. 7, is a

deep fully convolution network. SSD utilizes a set of default (fixed-size) anchor boxes with different aspect ratios

and sizes, as shown in Fig. 8, to discretize (regress and classify) the output space of default bounding boxes for

every convolutional layer output for handling objects with various sizes. The output of the convolutional layer is

called a feature map. Thus, Higher-resolution feature maps are responsible for detecting smaller objects and vice

versa. For every default bounding box, SSD predicts both the box offsets ∆(𝑐𝑥, 𝑐𝑦, 𝑤, ℎ) and the confidence scores

for all object categories [(𝑐1, 𝑐2,· · · , 𝑐𝑝)]. Hence, the SSD loss is a weighted sum of localization losses and

confidence losses. The last layer after the detection from multiple feature maps is followed by a non-maximum

suppression layer to produce the final detections. Non-maximum suppression (NMS) layer is used to overcome

multiple detections for the same object which deletes output boxes with low confidence score values if there are

two or more intersecting rectangles with the help of IoU (Intersection over Union).

Fig. 6. SSD object detection architecture [17].

8 Sohag Engineering Journal (SEJ) VOL. 3, No. 1, March 2023

Training is done after setting up the configuration file. With augmentation options are set to be a random

horizontal flip, image cropping, image scaling, brightness, and jpeg quality. And with the optimizer’s learning

rate decaying from an initial value of 0.08 till zero at maximum 50K training steps, and momentum of 0.9. The

training process was done on Google Colaboratory (Google Colab) mainly utilizing the free GPU access for

minimum training time and saving checkpoints and results in the drive. TensorBoard is used for visually

monitoring metrics during training and evaluation. It is decided to write the metrics for evaluation in the log file

every 1K training steps. There are multiple models deployed and tested with different hyperparameters; however,

we will show the latest model trained. Some of our models trained and deployed, before that final one, suffer from

information leakage due to changing the configuration which contains hyperparameters for the optimization

algorithm and the architecture for enhancing the evaluation metrics. Unfortunately, by doing so you indirectly

sent a feedback signal to the training algorithm, and if this is done multiple times you may be overfitting the

validation set. Hence, we use a test set that is separate and different from the validation set for measuring the

generalization.

The main metrics for training is the total loss, which consists of the classification loss, localization loss, and

regularization, presented in Fig. 9. And the evaluation metrics used for measuring performance are mean average

precision and average recall shown in Fig. 10. We have considered the recall calculated over all IoU values with

a maximum of 1,10, and 100 detections; however, AR@1 detection is shown only in Fig.10 (b). Noting that the

model used was early stopped at 27K; however, training is continued further than that but the generalization error

seemed to be increasing and the architecture begins to overfit the train set. Some results for model B detections

on the test set shown in Fig. 11.

Fig. 7. How predictions are made in SSD architecture [17].

Fig. 8. Total loss over time during training. The training metrics for model B.

Mohamed et al: Camera-Based Navigation System for Blind and Visually Impaired People 9

The currency dataset was from Kaggle, not manually captured, which not very similar to real-world ones. And
hence, currency classes can be improved by adding high quality images. However, when relatively good results
on the test set are acquired, the model is saved and frozen for making it ready for exporting to TFlite format to be
deployed on Raspberry Pi. Noting that a simple TFlite conversion was used. One further optimization can be done
to quantize the TFlite file which will give a faster performance. The conversion outputs the detect.tflite file which
is the needed file for Raspberry Pi to run model B. Then we run both models A and B together for the final result
shown in Fig. 12.

Fig. 100. Evaluation metrics for model B vs training steps: (a) Mean average precision (b) average recall on one detection per image.

(b) (a)

Fig. 10. Few results for model B detections on the test set.

10 Sohag Engineering Journal (SEJ) VOL. 3, No. 1, March 2023

Noting that, the code for detection A has two features. The first one is counting the number of objects of the

same class presented in the decision frame. The second is to give relative position information from the object

detected. By dividing the image into three-thirds, the user can know whether the detected object is left, right, or

in his front. Meanwhile, the code for detection B is just informing the user that the object does exist. For decreasing

information to the user and conveying higher confidence score objects, we make a detection limit for the detections

to be 3 detections for model A and another 3 for model B. There is one decision frame every multiple frames to

run both A and B detections. Firstly, the audio was conveyed via several mp3 files containing the labels; however,

this becomes messy for developing for a lot of classes so, we tried the offline text-to-speech python library pyttsx3.

The pyttsx3 engine uses strings which is more flexible for further developing or changing class names.

Some optimization to utilize the resources was done such as using the multi-threading to improve the frames

captured by the camera, counting the object decreasing time instead of hearing the same object name multiple

times, the user hears the number of the objects, ultrasonic code is optimized to work with higher frequency if there

is no object detected by either of models in the captured frame, and finally, minor optimizations replacing some

logical statements with a single arithmetic operation which is huge for the logical statements repeated every frame.

Considering the second block, mode 1, the simple face recognition mode. This mode is used to match human

faces in the input video frame to a collection of defined pre-trained faces. Face detection includes separating faces

from the background or clutter. It involves pre-processing for grayscale conversion and some filters help for front

faces classification and then localizing the position of a bounding box of the faces detected in the image. A face

recognition module is some method to identify or verify the identity of the detected face. Verification is done by

testing the detected faces with known faces in the collected database.

There is a dataset collected for three persons namely, Karam, Badran, and Fareed. The dataset is collected from

the same raspberry pi camera module for training on similar conditions of operations via a python script. About

eight images for each person are acquired which is relatively small but this gives an acceptable result. The training

process is based on the python script provided in [32]. After training, the face recognition model is tested and the

results are shown in Fig. 13.

Now, consider the third, mode 2, the reading text mode. This mode is essentially based on OCR which is

sometimes referred to as text recognition. Concisely, using the open-source tesseract engine. Python-tesseract, or

Pytesseract, is a tool in python which is a wrapper for the Tesseract-OCR Engine. This is the OCR tool used in

the proposed aiding system. Utilizing this tool, an image or a video frame captured is analyzed returning a list of

strings containing the words detected. Some pre-processing techniques may be used to improve the capability of

the ORC of detecting words such as converting the image to grayscale, removing noise by adding some blur,

dilation, erosion, applying canny edge detection, and skew correction. But unfortunately, we didn’t deploy these

Fig. 11. Model A and B running on Raspberry Pi.

Fig. 12. Results for face recognition model on the Raspberry Pi.

Mohamed et al: Camera-Based Navigation System for Blind and Visually Impaired People 11

pre-processing techniques hence, the results on the video frame are not good enough on smaller text. Another

factor that affects reading smaller text is the camera resolution. However, testing the mode on an image gives

satisfactory results for both large and small texts as shown in Fig. 14.

4. CONCLUSION AND FUTURE WORK:

In this paper, we have presented an offline real-time wearable attachment that is a glasses system for aiding

blind and visually impaired people. This system includes a camera, an ultrasonic sensor, an embedded Raspberry

Pi, a headset, and a battery. It is impossible to give vision to the blind; however, using computer vision and deep

learning, the BVI can obtain information through a headset, either indoor or outdoor, about obstacles and situations

in front of him during navigation. The BVI user can also recognize his family and friends, or read text and

signboards. This helps BVI to be self-dependent for doing many activities safely and comfortably.

Unfortunately, the system had not been experimented by users. However, some further future enhancements

and recommendations can make this system more reliable. Fortunately, the system is configurable. Therefore, a

lot of work can be done for the product to be released. Firstly, the detection subsystem, the reading text mode can

have better software in scanning video frames utilizing image processing for several frames, to obtain good and

accurate text detections. For face recognition mode, utilizing a mobile application connected with some sort of

server, to store images for people to be included for recognition then the system can update over the air whenever

it is connected to the internet. For object detection mode, improve model B, generally, by adding a large number

of examples therefore, the model generalizes better. Another technique may be considered that is called Generative

Adversarial Networks (or GANs) proposed by Ian Goodfellow in 2014 to synthesize or invent data. Training on

new architectures for object detection should be considered and you may consider multi-frame SSD [33] for video

object detection. Also, model B could be tuned via transfer learning utilizing the model maker API which does

the training with an already quantized efficientDet lite model. Quantized weights will give good results than the

proposed TF API training with double32 weights and then converting them to float16 or int8.

For a reliable distance measuring system, use multiple ultrasonic sensors to create some sort of 3D visualization

by involving the depth into the situation. Or you may consider using an RGB-D camera and train your models to

estimate depth for every labeled object but this RGB-D camera sensor may increase the cost significantly.

Raspberry Pi has a lot of spare I/O pins and multiple protocols for interfacing. Therefore, improving the system

to communicate with other systems can be possible consider utilizing any kind of helpful sensor and using multiple

feedback options. Decrease the weight of the glasses is a major concern so, the detaching boxes from the glasses'

sides and using a communication protocol for wiring. In a real-time manner, dynamic channels (wireless

communication) shouldn't be used. So, in my opinion, there should be wired channels between the different

wearable attachments and processing units. These channels and devices should be either waterproof or can be

detached from the wearables and hence, it can these wearables preferable to be treated as ordinary wearables. For

harsh environments, there are special types of ultrasonic which can handle a lot of harder circumstances, especially

for outdoor environments.

References

[1] "Blindness and vision impairment," World Health Organization, [Online]. Available:

https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. [Accessed 14 October

2021].

[2] P. Ackland, S. Resnikoff and B. Rupert, “World Blindness and Visual Impairment: Despite Many

Successes, The Problem Is Growing,” Community Eye Health Journal, vol. XXX (30), no. 100, pp. 71-73,

2017.

[3] B. Kuriakose, R. Shrestha and E. S. Eika Sandnes, "Tools and Technologies for Blind and Visually Impaired

Navigation Support: A Review Article," IETE Technical Review, vol. XXXIX (39), no. 1, pp. 3-18, 27

Fig. 13. Results for reading text mode on the Raspberry Pi.

12 Sohag Engineering Journal (SEJ) VOL. 3, No. 1, March 2023

September 2020.

[4] M. Rabani Mohd Romlay, S. Fauziah Toha, A. Mohd Ibrahim and I. Venkat, "Methodologies and

Evaluation of Electronic Travel Aids for the Visually Impaired People: A Review," Bulletin of Electrical

Engineering and Informatics, vol. X (10), no. 3, pp. 1747-1758, June 2021.

[5] C. Ye, S. Hong, X. Qian and W. Wu, "Co-Robotic Cane: A New Robotic Navigation Aid for the Visually

Impaired," IEEE Systems Man and Cybernetics Magazine, p. 33–42, April 2016.

[6] M. Helmy Abd Wahab, A. A. Talib, H. A. Kadir, A. Johari, A. Noraziah, R. M. Sidek and A. A.Mutalib,

"Smart Cane: Assistive Cane for Visually-impaired People," IJCSI International Journal of Computer

Science Issues, vol. VIII (8), no. 4, July 2011.

[7] "WeWalk smart cane," westminster technologies, [Online]. Available:

https://www.westminstertech.com/products/wewalk-smart-cane?variant=31405927923814.

[8] S. B Kallara, M. Raj, R. Raju, N. Mathew, P. V R and D. DS, "Indriya - A Smart Guidance System for the

Visually Impaired," IEEE Xplore Compliant, pp. 26-29, 23 November 2017.

[9] M. Rahman, M. M. Islam, S. Ahmmed and S. Khan, "Obstacle and Fall Detection to Guide the Visually

Impaired People with Real Time Monitoring," SN Computer Science, 27 June 2020.

[10] M. A. Rahman and M. Sadi, "IoT Enabled Automated Object Recognition for the Visually Impaired,"

Elsevier: Computer Methods and Programs in Biomedicine Update, vol. I, 21 May 2021.

[11] Sensotec, "OneStep Reader (KNFB READER)," Developed for Android and IOS, 9 October 2015. [Online].

Available: https://apps.apple.com/us/app/onestep-reader/id849732663.

[12] Cloudsight, "TapTapSee," Developed for Android and IOS, 4 April 2014. [Online]. Available:

https://play.google.com/store/apps/details?id=com.msearcher.taptapsee.android&hl=ar&gl=US.

[13] M. Douděra and Hayaku, "Cash Reader," Developed for Android and IOS, 26 February 2019. [Online].

Available: https://play.google.com/store/apps/details?id=com.martindoudera.cashreader&hl=ar&gl=US.

[14] Microsoft, "Seeing AI," Develobed only for IOS, 2021. [Online]. Available:

https://apps.apple.com/us/app/seeing-ai/id999062298.

[15] Y. Bouteraa, "Design and Development of a Wearable Assistive Device Integrating a Fuzzy Decision

Support System for Blind and Visually Impaired People," Micromachines, vol. XII (12), no. 9, 7 September

2021.

[16] H.-C. Wang, R. Katzschmann, S. Teng, B. Araki, L. Giarre and D. Rus, "Enabling Independent Navigation

for Visually Impaired People through a Wearable Vision-Based Feedback System," IEEE International

Conference on Robotics and Automation (ICRA), pp. 6533-6540, 29 May 2017.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. Berg, "SSD: Single Shot MultiBox

Detector," arXiv, 29 December 2016.

[18] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick and H. et al, “Microsoft COCO: Common Objects

in Context,” arXiv, 21 February 2015.

[19] R. Joshi, S. Yadav, M. Dutta and C. Travieso-Gonzalez, "Efficient Multi-Object Detection and Smart

Navigation Using Artificial Intelligence for Visually Impaired People," Entropy, vol. XXII (22), no. 9, 27

August 2020.

[20] E. EdjeElectronics, "TensorFlow-Lite-Object-Detection-on-Android-and-Raspberry-Pi," GitHub, 13

December 2020. [Online]. Available: https://github.com/EdjeElectronics/TensorFlow-Lite-Object-

Detection-on-Android-and-Raspberry-Pi/blob/master/Raspberry_Pi_Guide.md.

[21] A. Krizhevsky, V. Nair and G. Hinton, "CIFAR-100 (Canadian Institute for Advanced Research)," [Online].

Available: http://www.cs.toronto.edu/~kriz/cifar.html.

[22] N. Kamarudin, M. Makhtar, F. Syed Abdullah, M. Mohamad, F. Mohamad and M. F. Abdul Kadir,

"Comparison of image classification techniques using caltech 101 dataset," Journal of Theoretical and

Applied Information Technology, pp. 79-86, September 2015.

[23] M. Everingham, L. Gool, C. K. Williams, J. Winn and A. Zisserman, "The Pascal Visual Object Classes

(VOC) Challenge," Int. J. Comput. Vision, vol. LXXXVIII (88), no. 2, p. 303–338, June 2010.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "ImageNet: A large-scale hierarchical image

database," IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, 2009.

[25] Kaggle, [Online]. Available: https://www.kaggle.com/.

[26] "Caesium Image Compressor - Great Image Compression Tool With High Flexibility," ArtiStudio, 2

November 2021. [Online]. Available: https://wiki.artistudio.xyz/docs/web-development/tools/image-

compressor/caesium-image-compressor/.

[27] Tiny JPG, [Online]. Available: https://tinyjpg.com/.

[28] A. E. Egypt-Iris, R. Hisham, S. Tarek and M. ElKarargy, "Egyptian Currency," Kaggle, 1 August 2021.

[Online]. Available: https://www.kaggle.com/datasets/egyptiris/egyptian-currency.

Mohamed et al: Camera-Based Navigation System for Blind and Visually Impaired People 13

[29] Tzutalin, "LabelImg," GitHub, 2015. [Online]. Available: https://github.com/tzutalin/labelImg.

[30] “TensorFlow 2 Detection Model Zoo,” Github, [Online]. Available:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md.

[31] N. Renotte, “Tensorflow Object Detection Walkthrough,” GitHub, 3 April 2021. [Online]. Available:

https://github.com/nicknochnack/TFODCourse.

[32] Tim, "Face Recognition With Raspberry Pi and OpenCV," Core Electronics, 30 March 2022. [Online].

Available: https://core-electronics.com.au/guides/face-identify-raspberry-pi/.

[33] A. Broad and T.-Y. L. Michael Jones, "Recurrent Multi-frame Single Shot Detector for Video Object

Detection," 2018.

